۱ַ-̻Ǻܿ׵

ҹѡ˱Ǯ͡ͳ۷ɴ˷ʹһϵе²Ʒȥ³ϣʹҵһֱȶ150Σ󲿷ţеѾְУеȥشš
精英家教网> Щʮֲķ> 题目
08高考数学充要条件的判定测试充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.●难点磁场()已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件.●案例探究[例1]已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0),若⌐p

08高考数学充要条件的判定测试充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.●难点磁场()已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件.●案例探究[例1]已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0),若⌐p参考答案

参考答案

难点磁场

证明:(1)充分性:由韦达定理,得|b|=|α.β|=|α|.|β|<2×2=4.

f(x)=x2+ax+b,则f(x)的图象是开口向上的抛物线.

又|α|<2,|β|<2,∴f(±2)>0.

即有4+b>2a>-(4+b)

又|b|<44+b>02|a|<4+b

(2)必要性:

由2|a|<4+bf(±2)>0且f(x)的图象是开口向上的抛物线.

∴方程f(x)=0的两根αβ同在(-2,2)内或无实根.

αβ是方程f(x)=0的实根,

αβ同在(-2,2)内,即|α|<2且|β|<2.

歼灭难点训练

一、1.解析:若a2+b2=0,即a=b=0,此时f(-x)=(-x)|x+0|+0=-x.|x|=-(x|x+0|+b)

=-(x|x+a|+b)=-f(x).

a2+b2=0是f(x)为奇函数的充分条件,又若f(x)=x|x+a|+b是奇函数,即f(-x)=

(-x)|(-x)+a|+b=-f(x),则必有a=b=0,即a2+b2=0.

a2+b2=0是f(x)为奇函数的必要条件.

答案:D

2.解析:若a=1,则y=cos2x-sin2x=cos2x,此时y的最小正周期为π.故a=1是充分条件,反过来,由y=cos2ax-sin2ax=cos2ax.故函数y的最小正周期为π,则a=±1,故a=1不是必要条件.

答案:A

二、3.解析:当a=3时,直线l1:3x+2y+9=0;直线l2:3x+2y+4=0.∵l1l2A1A2=B1B2=1∶1,而C1C2=9∶4≠1,即C1C2,∴a=3l1l2.

答案:充要条件

4.解析:若P(x0,y0)是F(x,y)=0和G(x,y)=0的交点,则F(x0,y0)+λG(x0,y0)=0,即F(x,y)+λG(x,y)=0,过P(x0,y0);反之不成立.

答案:充分不必要

三、5.解:根据韦达定理得a=α+β,b=αβ.判定的条件是p:结论是q:(注意pab满足的前提是Δ=a2-4b≥0)

(1)由,得a=α+β>2,b=αβ>1,∴qp

(2)为证明pq,可以举出反例:取α=4,β=,它满足a=α+β=4+>2,b=αβ=4×=2>1,但q不成立.

综上讨论可知a>2,b>1是α>1,β>1的必要但不充分条件.

6.证明:①必要性:

设{an}成等差数列,公差为d,∵{an}成等差数列.

    从而bn+1bn=a1+n.da1-(n-1) d=d为常数. 

    故{bn}是等差数列,公差为d.

②充分性:

设{bn}是等差数列,公差为d′,则bn=(n-1)d′ 

bn(1+2+…+n)=a1+2a2+…+nan                                                                                                                                                            

bn1(1+2+…+n-1)=a1+2a2+…+(n-1)an                                                                                                                                   

①-②得:nan=bn1

an=,从而得an+1an=d′为常数,故{an}是等差数列.

综上所述,数列{an}成等差数列的充要条件是数列{bn}也是等差数列.

7.解:①必要性:

由已知得,线段AB的方程为y=-x+3(0≤x≤3)

由于抛物线C和线段AB有两个不同的交点,

所以方程组*有两个不同的实数解.

消元得:x2-(m+1)x+4=0(0≤x≤3)

f(x)=x2-(m+1)x+4,则有

②充分性:

当3<x时,

x1=>0

∴方程x2-(m+1)x+4=0有两个不等的实根x1,x2,且0<x1x2≤3,方程组*有两组不同的实数解.

因此,抛物线y=-x2+mx-1和线段AB有两个不同交点的充要条件3<m.

8.解:若关于x的方程x2+mx+n=0有2个小于1的正根,设为x1,x2.

则0<x1<1,0<x2<1,有0<x1+x2<2且0<x1x2<1,

根据韦达定理:

有-2<m<0;0<n<1即有qp.

反之,取m=-<0

方程x2+mx+n=0无实根,所以pq

综上所述,pq的必要不充分条件.